Initial commit

This commit is contained in:
jslightham
2023-05-21 23:28:11 -04:00
commit 0360e7dfcc
31 changed files with 2068 additions and 0 deletions

189
P4/Graph.cpp Normal file
View File

@@ -0,0 +1,189 @@
#include "Graph.h"
#include <limits.h>
#include "PriorityQueue.h"
#include "illegal_exception.h"
/// @brief Create a new graph
/// @param maxCount The maximum number of elements the graph is required to store
/// @param mst A flag to enable MST (enabling makes the runtime of the graph worse)
Graph::Graph(int maxCount, bool mst)
{
vertexList.reserve(maxCount);
if (!mst)
pq = new PriorityQueue(maxCount);
this->maxCount = maxCount;
this->mstEnabled = mst;
}
Graph::~Graph()
{
delete pq;
}
/// @brief Insert an edge from vertex a to b, with weight w. When MST flag is true, it is invalid to pass in edges that already exist in the graph.
/// @param a Vertex a
/// @param b Vertex b
/// @param weight The weight of the edge to insert
/// @return True if successful, false otherwise
/// @throws illegal_exception if given invalid input
bool Graph::Insert(int a, int b, int weight)
{
// Check input validity
if (a > 50000 || a < 1 || b > 50000 || b < 1 || weight < 1)
{
throw illegal_exception();
}
// Check if the node already exists. Skip this check when the MST is disabled - allows efficient inserts for building tree.
int count = adjacencyList[a].size();
if (!mstEnabled)
{
for (int i = 0; i < count; i++)
{
int currentData = std::get<0>(adjacencyList[a][i]);
if (currentData == b)
return false;
}
}
// Add the b vertex to the adjacency list for a
adjacencyList[a].push_back(std::make_tuple(b, weight));
// Add the vertex a to the vertexList, if a has never been added to the graph
if (count == 0)
vertexList.insert(vertexList.begin() + vertexList.size(), std::make_tuple(a, INT_MAX, -1));
// Add a vertex to the adjacency list for b, and insert b into vertexList if required
count = adjacencyList[b].size();
adjacencyList[b].push_back(std::make_tuple(a, weight));
if (count == 0)
vertexList.insert(vertexList.begin() + vertexList.size(), std::make_tuple(b, INT_MAX, -1));
return true;
}
/// @brief Delete vertex a from the graph.
/// @param a The vertex to delete from the graph.
/// @return True if successful, false otherwise.
/// @throws illegal_exception if given invalid input.
bool Graph::Delete(int a)
{
// Check input conditions
if (a > 50000 || a < 1)
{
throw illegal_exception();
}
// Ensure the vertex is in the graph
int count = adjacencyList[a].size();
if (count == 0)
return false;
// Remove all references to the vertex in the adjacency lists of other vertices, and in the vertexList.
while (count != 0)
{
std::tuple<int, int> lastData = adjacencyList[a][count - 1];
adjacencyList[a].pop_back();
// Remove vertex from all adjacency lists
for (int j = 0; j < adjacencyList[std::get<0>(lastData)].size(); j++)
{
if (std::get<0>(adjacencyList[std::get<0>(lastData)][j]) == a)
{
adjacencyList[std::get<0>(lastData)].erase(adjacencyList[std::get<0>(lastData)].begin() + j);
}
}
// If removing vertex a causes any adjacency lists to become empty, remove that vertex from the vertexList.
if (adjacencyList[std::get<0>(lastData)].size() < 1)
{
for (int j = 0; j < vertexList.size(); j++)
{
if (std::get<0>(vertexList[j]) == std::get<0>(lastData))
vertexList.erase(vertexList.begin() + j);
}
}
count--;
}
// Remove a from the vertex list.
for (int i = 0; i < vertexList.size(); i++)
{
if (std::get<0>(vertexList[i]) == a)
vertexList.erase(vertexList.begin() + i);
}
return true;
}
/// @brief Get a vector containing the adjacent vertices to a
/// @param a The vertex to check
/// @return A vector of all vertices
/// @throws illegal_exception if given invalid input.
std::vector<std::tuple<int, int>> *Graph::GetAdjacent(int a)
{
if (a > 50000 || a < 1)
{
throw illegal_exception();
}
return &adjacencyList[a];
}
/// @brief Compute the MST of the graph
/// @param out A vector to output the resulting MST edges in
/// @return The cost of the MST
int Graph::MST(std::vector<std::tuple<int, int, int>> *out)
{
// If there are no nodes, or somehow only one node.
if (vertexList.size() < 2)
return 0;
// When there is only one edge, that edge is the MST
if (vertexList.size() < 3)
{
out->push_back(std::make_tuple(std::get<0>(vertexList[0]), std::get<0>(vertexList[1]), std::get<1>(adjacencyList[std::get<0>(vertexList[0])][0])));
return std::get<1>(adjacencyList[std::get<0>(vertexList[0])][0]);
}
// Attribution: Some of the Pseudocode used to write this function is from the CLRS textbook.
int cost = 0;
pq->Init(&vertexList);
// Apply Prim's Algorithm using a PriorityQueue.
// Extract elements from the PQ until it is empty
while (!pq->IsEmpty())
{
// Extract the element with the lowest weight
std::tuple<int, int, int> u = pq->HeapExtractMin();
// Prevent insertion of first node (or any infinite weights).
if (std::get<1>(u) != INT_MAX)
{
out->push_back(std::make_tuple(std::get<2>(u), std::get<0>(u), std::get<1>(u)));
cost += std::get<1>(u);
}
// Iterate through all of the adjacent vertices
for (int i = 0; i < adjacencyList[std::get<0>(u)].size(); i++)
{
std::tuple<int, int> v = adjacencyList[std::get<0>(u)][i]; // The vertex being examined
// If the current path is better than the stored path, update it.
if (pq->Contains(std::get<0>(v)) && std::get<1>(v) < pq->GetKey(std::get<0>(v)))
{
pq->Modify(std::get<0>(v), std::get<1>(v), std::get<0>(u));
}
}
}
return cost;
}
/// @brief Get the number of vertices in the graph
/// @return The number of vertices in the graph
int Graph::GetVertexCount()
{
return vertexList.size();
}

27
P4/Graph.h Normal file
View File

@@ -0,0 +1,27 @@
#ifndef TRIE_H
#define TRIE_H
#include <iostream>
#include <vector>
#include <tuple>
#include "PriorityQueue.h"
class Graph
{
public:
Graph(int maxCount, bool mst);
~Graph();
bool Insert(int a, int b, int weight);
bool Delete(int a);
std::vector<std::tuple<int, int>> *GetAdjacent(int a);
int GetVertexCount();
int MST(std::vector<std::tuple<int, int, int>> *outList);
private:
PriorityQueue *pq;
std::vector<std::tuple<int, int>> adjacencyList[50001]; // An array of vectors of tuples <node2, weight>
std::vector<std::tuple<int, int, int>> vertexList; // List of all vertices in the graph stored as <node1, inf, -1>
int maxCount;
bool mstEnabled;
};
#endif

2
P4/Makefile Normal file
View File

@@ -0,0 +1,2 @@
all: Test.cpp Graph.cpp PriorityQueue.cpp
g++ -std=c++11 Test.cpp Graph.cpp PriorityQueue.cpp

153
P4/PriorityQueue.cpp Normal file
View File

@@ -0,0 +1,153 @@
#include "PriorityQueue.h"
#include <limits>
// Attribution: Some of the Pseudocode used to write these functions is from the CLRS textbook.
PriorityQueue::PriorityQueue(int maxCount)
{
count = 0;
locations.reserve(maxCount);
arr.reserve(maxCount);
for (int i = 0; i < maxCount; i++)
{
locations[i] = -1;
}
}
/// @brief Initialize the priority queue with the given vector of tuples. The tuples should be in the format: <vertex, weight, parent>
/// @param vertexList The vector of tuples to insert into the priority queue.
void PriorityQueue::Init(std::vector<std::tuple<int, int, int>> *vertexList)
{
count = vertexList->size();
for (int i = 0; i < count; i++)
{
arr[i] = vertexList->at(i);
locations[std::get<0>(vertexList->at(i))] = i;
}
}
/// @brief Modify the weight and/or the parent of vertex v
/// @param v The vertex to modify (not the index in the priority queue)
/// @param w The weight to set
/// @param parent The parent to set
/// @return True if successful, false otherwise
bool PriorityQueue::Modify(int v, int w, int parent)
{
if (count < 1)
return false;
int i = locations[v];
if (i < 0)
return false;
std::get<1>(arr[i]) = w;
std::get<2>(arr[i]) = parent;
while (i > 0 && std::get<1>(arr[Parent(i)]) > std::get<1>(arr[i]))
{
Exchange(i, Parent(i));
i = Parent(i);
}
return true;
}
/// @brief Extract the smallest value from the priority queue (the topmost element, since this is a min pq).
/// @return The element in the priority queue if not empty, or a tuple of all ints <-1, -1, -1> if empty
std::tuple<int, int, int> PriorityQueue::HeapExtractMin()
{
// Signal no minimum element if there are no elements.
if (IsEmpty())
return std::make_tuple<int, int, int>(-1, -1, -1);
std::tuple<int, int, int> min = arr[0];
locations[std::get<0>(arr[count - 1])] = 0;
locations[std::get<0>(min)] = -1;
arr[0] = arr[count - 1];
count--;
MinHeapify(0);
return min;
}
/// @brief Run the MinHeapify algorithm on the pq.
/// @param i The index (not the vertex).
void PriorityQueue::MinHeapify(int i)
{
int l = Left(i);
int r = Right(i);
int smallest = i;
if (l < count && std::get<1>(arr[l]) < std::get<1>(arr[i]))
smallest = l;
if (r < count && std::get<1>(arr[r]) < std::get<1>(arr[smallest]))
smallest = r;
if (smallest != i)
{
Exchange(i, smallest);
MinHeapify(smallest);
}
}
/// @brief Get a boolean value to determine if the priority queue is empty
/// @return True if the priority queue is empty, false otherwise.
bool PriorityQueue::IsEmpty()
{
return count < 1;
}
/// @brief Check if the priority queue contains a vertex v.
/// @param v The vertex (not index) to check.
/// @return True if the vertex (not index) is contained in the priority queue, false otherwise.
bool PriorityQueue::Contains(int v)
{
return locations[v] != -1;
}
/// @brief Get the key (weight) of a vertex (not index) in the priority queue
/// @param v The vertex (not index) to get the weight for
/// @return The key (weight) of the vertex
int PriorityQueue::GetKey(int v)
{
return std::get<1>(arr[locations[v]]);
}
/// @brief Swap the elements of index a and index b (not the vertex number)
/// @param a The index (not vertex) of the element to swap
/// @param b The index (not vertex) of the element to swap
void PriorityQueue::Exchange(int a, int b)
{
locations[std::get<0>(arr[a])] = b;
locations[std::get<0>(arr[b])] = a;
std::tuple<int, int, int> temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
/// @brief Given an index (not vertex), get the parent of that index (not vertex)
/// @param i The index (not vertex) to get the parent of
/// @return The index (not vertex) of the parent
int PriorityQueue::Parent(int i)
{
return (i - 1) / 2;
}
/// @brief Given an index (not vertex), get the left child of that index (not vertex)
/// @param i The index (not vertex) to get the left child of
/// @return The index (not vertex) of the left child
int PriorityQueue::Left(int i)
{
return 2 * i + 1;
}
/// @brief Given an index (not vertex), get the right child of that index (not vertex)
/// @param i The index (not vertex) to get the right child of
/// @return The index (not vertex) of the right child
int PriorityQueue::Right(int i)
{
return 2 * i + 2;
}

31
P4/PriorityQueue.h Normal file
View File

@@ -0,0 +1,31 @@
#ifndef PRIORITYQUEUE_H
#define PRIORITYQUEUE_H
#include <iostream>
#include <vector>
#include <tuple>
class PriorityQueue
{
public:
PriorityQueue(int maxCount);
void Init(std::vector<std::tuple<int, int, int>> *vertexList);
std::tuple<int, int, int> HeapExtractMin();
bool Modify(int i, int w, int parent);
bool Contains(int v);
bool IsEmpty();
int GetKey(int v);
private:
int count;
void Exchange(int a, int b);
void MinHeapify(int i);
int Parent(int i);
int Left(int i);
int Right(int i);
std::vector<std::tuple<int, int, int>> arr; // The actual priority queue.
std::vector<int> locations; // References for vertex -> PQ index. Allows indexing PQ in O(1) time.
const int MAX_UNIQUE_KEYS = 50001;
};
#endif

180
P4/Test.cpp Normal file
View File

@@ -0,0 +1,180 @@
#include <iostream>
#include <fstream>
#include "Graph.h"
#include "illegal_exception.h"
using namespace std;
const int MAX_NODE_COUNT = 50001;
int main()
{
string cmd;
Graph *graph = new Graph(MAX_NODE_COUNT, false);
bool mstModified = true;
int prevCost = 0;
std::vector<std::tuple<int, int, int>> prevOutput;
while (cin >> cmd)
{
if (cmd == "LOAD")
{
mstModified = true;
string filename;
cin >> filename;
ifstream fin(filename.c_str());
int count;
fin >> count;
int n1;
while (fin >> n1)
{
int n2;
fin >> n2;
int w;
fin >> w;
graph->Insert(n1, n2, w);
}
fin.close();
cout << "success" << endl;
}
else if (cmd == "INSERT")
{
int a;
int b;
int w;
cin >> a;
cin >> b;
cin >> w;
try
{
if (graph->Insert(a, b, w))
{
mstModified = true;
std::cout << "success" << std::endl;
}
else
{
std::cout << "failure" << std::endl;
}
}
catch (illegal_exception)
{
std::cout << "illegal argument" << std::endl;
}
}
else if (cmd == "DELETE")
{
int a;
cin >> a;
try
{
if (graph->Delete(a))
{
mstModified = true;
std::cout << "success" << std::endl;
}
else
{
std::cout << "failure" << std::endl;
}
}
catch (illegal_exception)
{
std::cout << "illegal argument" << std::endl;
}
}
else if (cmd == "PRINT")
{
int a;
cin >> a;
try
{
std::vector<std::tuple<int, int>> *out = graph->GetAdjacent(a);
for (int i = 0; i < out->size(); i++)
{
std::cout << get<0>(out->at(i)) << " ";
}
if (out->size() < 1)
{
std::cout << "failure";
}
std::cout << endl;
}
catch (illegal_exception)
{
std::cout << "illegal argument" << std::endl;
}
}
else if (cmd == "MST")
{
// Prevent useless regeneration of MST.
if (!mstModified)
{
if (prevOutput.size() < 1)
std::cout << "failure";
for (int i = 0; i < prevOutput.size(); i++)
{
std::cout << std::get<0>(prevOutput[i]) << " " << std::get<1>(prevOutput[i]) << " " << std::get<2>(prevOutput[i]) << " ";
}
std::cout << std::endl;
}
else
{
std::vector<std::tuple<int, int, int>> out;
out.reserve(graph->GetVertexCount());
prevCost = graph->MST(&out);
prevOutput = out;
for (int i = 0; i < out.size(); i++)
{
std::cout << std::get<0>(out[i]) << " " << std::get<1>(out[i]) << " " << std::get<2>(out[i]) << " ";
}
if (out.size() < 1)
std::cout << "failure";
std::cout << std::endl;
mstModified = false;
}
}
else if (cmd == "COST")
{
// Prevent useless regeneration of MST.
if (!mstModified)
{
std::cout << "cost is " << prevCost << std::endl;
}
else
{
std::vector<std::tuple<int, int, int>> out;
out.reserve(graph->GetVertexCount());
int cost = graph->MST(&out);
prevOutput = out;
prevCost = cost;
std::cout << "cost is " << cost << std::endl;
mstModified = false;
}
}
else if (cmd == "END")
{
break;
}
}
delete graph;
}

10
P4/illegal_exception.h Normal file
View File

@@ -0,0 +1,10 @@
#ifndef ILLEGAL_EXCEPTION_H
#define ILLEGAL_EXCEPTION_H
#include <exception>
class illegal_exception : std::exception
{
};
#endif