mostly finished

This commit is contained in:
jslightham
2020-05-25 12:43:28 -04:00
parent d56a3ab4d5
commit 1fdc4bb27f
4 changed files with 794 additions and 0 deletions

169
index.html Normal file
View File

@@ -0,0 +1,169 @@
<html>
<head>
<!-- Googe Charts Script - For Graphs-->
<script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
<script src="main.js"></script>
<title>Collision Simulation</title>
<style>
body{
font-family: Helvetica, "Trebuchet MS", Verdana, sans-serif;
background-color: #f2f2f2;
}
h1, h4{
padding-bottom: none;
padding-top: none;
}
table, th, td, tr{
border: 2px solid black;
}
.wrapper {
overflow:hidden;
}
.wrapper div {
min-height: 200px;
padding: 10px;
}
#one {
background-color: white;
float: left;
margin-right: 10px;
width: 58%;
border-radius: 15px;
margin-bottom: 25px;
}
#two {
background-color: white;
overflow:hidden;
margin: 0px;
border-radius: 15px;
min-height: 20%;
width:500px;
}
@media screen and (max-width: 400px) {
#one {
float: none;
margin-right:0;
width:auto;
border:0;
border-bottom:2px solid #000;
}
}
.numinput{
width:15%;
}
#playButton {
position: fixed; /* Sit on top of the page content */
display: block; /* Hidden by default */
width: 100%; /* Full width (cover the whole page) */
height: 100%; /* Full height (cover the whole page) */
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: rgba(0,0,0,0.5); /* Black background with opacity */
z-index: 2; /* Specify a stack order in case you're using a different order for other elements */
cursor: pointer; /* Add a pointer on hover */
}
#play{
color: white;
text-align: center;
margin-top: 50px;
}
table {
border-collapse: collapse;
width: 100%;
border: none;
}
table td, table th {
border: 1px solid #ddd;
padding: 2px;
}
table tr{background-color: #f2f2f2;}
table th {
padding-top: 5px;
padding-bottom: 5px;
text-align: left;
background-color: #5bc0de;
color: white;
}
</style>
</head>
<body>
<div id = "playButton">
<div id="play">
<h1>Welcome to the collision simulator!</h1>
<h3>A Project by: Johnathon Slightham</h2>
<p>Visit the wiki on github for more information on how this works!</p>
<h3>To use the simulator:</h3>
<ul>
<li>Add A Particle with the form on the right</li>
<li>Change the coefficients of friction on the form to the right</li>
<li>Change the collision effectiveness on the form to the right</li>
<li>View the graph below the simulation</li>
<li>Change what the graph displays in each axis</li>
</ul>
<button onclick="main('myCanvas')" style="width: 20%; height: 5%; border-radius: 10px; background-color:#0275d8; border: none; color: white;">Run Simulation</button>
</div>
</div>
<h1>Collision Simulator</h1>
<h4>Project by Johnathon Slightham</h3>
<div class="wrapper">
<div id="one">
<center>
<canvas id="myCanvas" width="750" height="750" style="border: solid 2px black;">Your browser does not support HTML 5</canvas><br>
</center>
</div>
<div id="two">
<h3>Modifiers</h3>
Coefficient of Kinetic Friction: <input type="number" value="0.00005" step="0.000001" id="fr" onchange="frChange()" class="numinput"> <br>
<!-- Coefficient of Static Friction: <input type="number" value="0.005" step="0.000001" id="sfr" onchange="sfrChange()" class="numinput"> <br> /!-->
Collision Effectiveness (100% - No energy lost): <input type="number" id="effe" value="85" class="numinput" onchange="effeChange()">% <br>
Draw Velocity Vector: <input type="checkbox" id="drawvelocity" name="drawvelocity" value="true">
<h3>Placed Particles</h3>
<table id="particles">
<tr>
<th>ID #</th>
<th>Mass</th>
<th>X Velocity</th>
<th>Y Velocity</th>
<th>X Acceleration</th>
<th>Y Acceleration</th>
</tr>
</table>
Total Kinetic Energy: <span id="ek"></span> J
<h3>Add Particles</h3>
<form action="#" onsubmit="addParticle(); return false" name="add" id="add">
Mass: <input type="number" id="mass" name="mass"> X-Velocity: <input type="number" id="xvel" name="xvel"> Y-Velocity: <input type="number" id="yvel" name="yvel"> <input type="submit" value="Add Particle">
</form>
<h3>Modify Graph</h3>
Graph X Axis:
<select id="graphx">
</select>
Graph Y Axis:
<select id="graphy">
</select>
</div>
<br>
</div>
<div id="curve_chart"></div>
</body>
</html>

625
main.js Normal file
View File

@@ -0,0 +1,625 @@
class Particle{
constructor(id, x, y, vx, vy, m){
this.id = id;
this.x = x;
this.y = y;
this.vx = vx;
this.vy = vy;
this.m = m;
this.r = getRadius(m);
this.v = Math.sqrt(Math.pow(this.vx, 2) + Math.pow(this.vy, 2));
this.ek = [];
this.ek.push([0, 0]);
this.ax = 0
this.ay = 0;
}
}
// Functions to display or hide the welcome screen
function on() {
document.getElementById("playButton").style.display = "block";
}
function off() {
document.getElementById("playButton").style.display = "none";
}
var particles = [];
var ctx;
var canvas;
var table;
var a = 0;
var sa;
var ek = [];
var eff = 0.85;
var shot = new Audio("shot.mp3");
var wallhit = new Audio("wallhit.mp3");
var selector = document.getElementById('graph_type');
var sfr = 0;
var fr = 0;
var drawVelocityVector = false;
var measurementData = [];
var chartX = "measurement";
var chartY = "ekt"
measurementData.push('Measurement Number');
measurementData.push(0);
ek.push('Kientic Energy (J)');
ek.push(0);
var measurement = 0;
// Load the google charts API
google.charts.load('current', {'packages':['corechart']});
function main(elem){
off();
canvas = document.getElementById(elem);
ctx = canvas.getContext("2d");
table = document.getElementById("particles");
fr = document.getElementById("fr").value;
//sfr = document.getElementById("sfr").value;
drawVelocityVector = document.getElementById("drawvelocity").checked;
reloadDropdowns();
// Set a callback to run when the charts API is loaded
google.charts.setOnLoadCallback(drawKEChart);
//canvas.addEventListener("mousedown", doMouseDown, false);
//canvas.addEventListener("onmouseup", doMouseUp, false);
// Loop through each particle every 10 milliseconds, create measurements every 1 second
setInterval(loop, 10);
setInterval(measureData, 1000);
}
// The main loop function that handles each particle
function loop(){
// Set volumes of sounds according to % energy transferred
eff = document.getElementById("effe").value/100;
shot.volume = 1 - eff;
wallhit.volume = 1 - eff;
// Acceleration = 9.8*uk (derived from F=ma, -uk*g*m=m*a)
a = -(9.8)*fr;
sa = -(9.8)*sfr;
chartX = document.getElementById("graphx").value;
chartY = document.getElementById("graphy").value;
drawVelocityVector = document.getElementById("drawvelocity").checked;
// Write the current kinetic energy, then reset to 0 for recalculation
document.getElementById("ek").innerHTML = ek[ek.length-1];
// Draw board, then process collisions.
draw();
separate();
detectCollisions();
// Iterate through each particle, to change it's velocity from acceleration, and position from velocity
particles.forEach((elem, i) => {
// Determine velocity vector and store for later use
elem.v = Math.sqrt(Math.pow(elem.vx, 2) + Math.pow(elem.vy, 2));
// Check for collisions with wall, and on collision set to - velocity
if(elem.x + elem.vx > canvas.width - elem.r || elem.x + elem.vx < elem.r){
elem.vx = -eff*elem.vx;
let wallHitAudio = wallhit.cloneNode();
wallHitAudio.volume = 1 - eff;
wallHitAudio.play()
// Fix bug of balls getting stuck in walls, if a ball is in a wall move it out
if(elem.x + elem.vx > canvas.width - elem.r){
elem.x = canvas.width - elem.r;
}
if(elem.x + elem.vx < elem.r){
elem.x = elem.r;
}
}
if(elem.y + elem.vy > canvas.height - elem.r || elem.y + elem.vy < elem.r){
elem.vy = -eff*elem.vy;
let wallHitAudio = wallhit.cloneNode();
wallHitAudio.volume = 1 - eff;
wallHitAudio.play()
// Fix bug of balls getting stuck in walls, if a ball is in a wall move it out
if(elem.y + elem.vy < elem.r){
elem.y = elem.r;
}
if(elem.y + elem.vy > canvas.width - elem.r){
elem.y = canvas.height - elem.r;
}
}
// Calculate Theta, and acceleration values based on the direction of the velocity vector
elem.theta = Math.atan2(elem.vx,elem.vy);
elem.sax = sa*Math.abs(Math.sin(elem.theta));
elem.say = sa*Math.abs(Math.cos(elem.theta));
elem.ax = a*Math.abs(Math.sin(elem.theta));
elem.ay = a*Math.abs(Math.cos(elem.theta));
// If the particle has enough velocity to be decelerated, decelerate it
if(!Math.abs(elem.vx) < Math.abs(elem.ax) || !Math.abs(elem.vy) < Math.abs(elem.ay)){
// Add acceleration to velocity each iteration
if(elem.vx > 0){
elem.vx += elem.ax;
}
else{
elem.vx -= elem.ax;
}
// Add acceleration to velocity each iteration
if(elem.vy > 0){
elem.vy += elem.ay;
}
else{
elem.vy -= elem.ay;
}
}else{
elem.ax = 0;
elem.ay = 0;
}
// Set velocity to zero if the acceleration is larger than it
if(Math.abs(elem.ay) > Math.abs(elem.vy) || Math.abs(elem.ax) > Math.abs(elem.vx)){
elem.ax = 0;
elem.ay = 0;
elem.vx = 0;
elem.vy = 0;
}else{
if((elem.vx == 0 || elem.vy == 0) && (Math.abs(elem.say) > Math.abs(elem.vy) || Math.abs(elem.sax) > Math.abs(elem.vx))){
elem.ax = 0;
elem.ay = 0;
elem.vx = 0;
elem.vy = 0;
}else{
// Each iteration add the velocity to the position
elem.x += elem.vx;
elem.y += elem.vy;
}
}
// Display data in the table
table.rows[i+1].cells[0].innerHTML = elem.id;
table.rows[i+1].cells[1].innerHTML = elem.m + " kg";
table.rows[i+1].cells[2].innerHTML = Math.abs(elem.vx.toPrecision(2));
table.rows[i+1].cells[3].innerHTML = Math.abs(elem.vy.toPrecision(2));
table.rows[i+1].cells[4].innerHTML = elem.ax.toPrecision(2);
table.rows[i+1].cells[5].innerHTML = elem.ay.toPrecision(2);
})
}
// Function to draw all particles on the canvas, and draw velocity vectors
function draw(){
ctx.clearRect(0, 0, canvas.width, canvas.height);
particles.forEach((elem, i) =>
{
// Draw actual particle
ctx.beginPath();
ctx.fillStyle = "black";
ctx.strokeStyle = "black";
ctx.arc(elem.x, elem.y, elem.r, 0, 2*Math.PI);
ctx.fill();
ctx.stroke();
// Center mass in particle
ctx.font = elem.m*0.55 + 'px serif';
ctx.fillStyle = "white";
ctx.textAlign = "center";
ctx.fillText(elem.m+"kg", elem.x, elem.y + elem.r/4);
// Draw Velocity Vector, if this option is selected
if(drawVelocityVector){
ctx.beginPath();
ctx.strokeStyle = "red";
ctx.moveTo(elem.x, elem.y);
ctx.lineTo(elem.x + elem.v*Math.sin(elem.theta)* 10, elem.y + elem.v*Math.cos(elem.theta) * 10);
ctx.stroke();
}
});
}
// Function that returns the distance between the two particles given
function getDistance(p1, p2){
let xDist = Math.abs(p1.x - p2.x);
let yDist = Math.abs(p1.y - p2.y);
return Math.sqrt(Math.pow(xDist, 2) + Math.pow(yDist, 2));
}
var collisions = [];
// Function that will separate all particles on the canvas
function separate(){
collisions = [];
let noOverlap = false;
while(!noOverlap){
noOverlap = true;
particles.forEach((elem1, i) => {
for(var j = i+1; j < particles.length; j++){
elem2 = particles[j];
// Make sure not comparing the same element
if(elem1 != elem2){
// If the particles are overlapping
if(getDistance(elem1, elem2) < elem1.r + elem2.r){
collisions.push({element1: elem1, element2: elem2});
console.log("overlap");
// Move the particle back to its previous position, only if doing so will not put it inside of a wall
if(!elem1.x - elem1.vx > canvas.width - elem1.r || !elem1.x - elem1.vx < elem1.r)
elem1.x -= elem1.vx;
if(!elem2.x - elem2.vx > canvas.width - elem2.r || !elem2.x - elem2.vx < elem2.r)
elem2.x -= elem2.vx;
if(!elem1.y - elem1.vy > canvas.height - elem1.r || !elem1.y - elem1.vy < elem1.r)
elem1.y -= elem1.vy;
if(!elem2.y - elem2.vy > canvas.height - elem2.r || !elem2.y - elem2.vy < elem2.r)
elem2.y -= elem2.vy;
noOverlap = false;
draw();
}
}
}
})
}
}
// Function that detects, and handles all collisions.
function detectCollisions(){
collisions.forEach((collision) => {
let shotAudio = shot.cloneNode()
shotAudio.volume = 1 - eff;
shotAudio.play()
elem1 = collision.element1;
elem2 = collision.element2;
// Check if the particles being compared are the same, if they are don't run collision detection or particles will collide with themselves.
if(elem1 != elem2){
elem1.px = elem1.x;
elem1.py = elem1.y;
elem2.px = elem2.x;
elem2.py = elem2.y;
// Store previous velocities, this will be used later when detecting static friction
elem1.pvx = elem1.vx;
elem1.pvy = elem1.vy;
elem2.pvx = elem2.vx;
elem2.pvy = elem2.vy;
// If the particles are still overlapping, separate them again
if(getDistance(elem1, elem2) < elem1.r + elem2.r){
console.log("overlap");
elem1.x -= elem1.vx;
elem1.y -= elem1.vy;
elem2.x -= elem2.vx;
elem2.y -= elem2.vy;
}
// Theta = angle of velocity
let theta1 = Math.atan2(elem1.vx,elem1.vy);
let theta2 = Math.atan2(elem2.vx,elem2.vy);
// Phi = angle of collision
let phi = Math.atan2((elem2.px - elem1.px),(elem2.py - elem1.py));
// Find rotated x & y components, with x axis parallel to the contact normal vector
let v1xr = elem1.v*Math.cos(theta1 - phi);
let v1yr = elem1.v*Math.sin(theta1 - phi);
let v2xr = elem2.v*Math.cos(theta2 - phi);
let v2yr = elem2.v*Math.sin(theta2 - phi);
// Use the rotated components to solve a 1 dimensional collision.
let v1fxr = eff*(v1xr*(elem1.m - elem2.m) + 2*elem2.m*v2xr)/(elem1.m + elem2.m);
let v2fxr = eff*(v2xr*(elem2.m - elem1.m) + 2*elem1.m*v1xr)/(elem2.m + elem1.m);
elem1.vy = v1fxr*Math.cos(phi) + v1yr*Math.cos(phi + Math.PI/2);
elem1.vx = v1fxr*Math.sin(phi) + v1yr*Math.sin(phi + Math.PI/2);
elem2.vy = v2fxr*Math.cos(phi) + v2yr*Math.cos(phi + Math.PI/2);
elem2.vx = v2fxr*Math.sin(phi) + v2yr*Math.sin(phi + Math.PI/2);
// Calculate new theta, and static acceleration for static friction checking
elem1.theta = Math.atan2(elem1.vx,elem1.vy);
elem1.sax = sa*Math.abs(Math.sin(elem1.theta));
elem1.say = sa*Math.abs(Math.cos(elem1.theta));
elem2.theta = Math.atan2(elem2.vx,elem2.vy);
elem2.sax = sa*Math.abs(Math.sin(elem2.theta));
elem2.say = sa*Math.abs(Math.cos(elem2.theta));
if((elem2.sax > elem2.vx || elem2.say > elem2.vy) && (elem2.pvx == 0 || elem2.pvy == 0)){
//elem2.vx = 0;
//elem2.vy = 0;
}
if(elem1.sax > elem1.vx || elem1.say > elem1.vy && (elem1.pvx == 0 || elem1.pvy == 0)){
//elem1.vx = 0;
//elem1.vy = 0;
}
}
});
}
// Function called when the add particle button is submitted
function addParticle(){
var form = document.getElementById("add");
var errMsg = "Errors: "; // String to store all errors with entered data
// Mass cannot be less than 1 error
if(form["mass"].value < 1){
errMsg += "Cannot Have Negative, or Zero Mass! "
}
// Mass is too large for the canvas size error
else if(getRadius(form["mass"].value)*2 + 10 > canvas.width || getRadius(form["mass"].value)*2 + 10 > canvas.height){
errMsg += "That mass is too large for this canvas! "
}else if(!form["xvel"].value || !form["yvel"].value || !form["mass"].value){
errMsg += "One or more values is not defined! "
}
// If no errors, add rows to the table and insert the particle into the array
else{
var xv = parseInt(form["xvel"].value)
var yv = parseInt(form["yvel"].value)
// Check if the acceleration is larger than the velocity, if so set velocity to 0 and not negative.
let n = 1;
if(particles.length > 0){
n = particles[particles.length-1].id +1;
}
// Find a position that is not ontop of another ball, or inside of a wall. This will randomize the position 9 times or until a successful location is discovered.
let validPos = false;
let numtries = 0;
let tx = 0; let ty = 0;
while(!validPos && numtries < 9){
numtries ++;
validPos = true;
tx = Math.round(Math.random()*((canvas.width - getRadius(parseInt(form["mass"].value))) - getRadius(parseInt(form["mass"].value)) - 5) + getRadius(parseInt(form["mass"].value)) + 5);
ty = Math.round(Math.random()*((canvas.height - getRadius(parseInt(form["mass"].value))) - getRadius(parseInt(form["mass"].value)) - 5) + getRadius(parseInt(form["mass"].value)) + 5);
let temp = new Particle(n, tx, ty, xv, yv, parseInt(form["mass"].value)+5);
particles.forEach(particle =>{
if(getDistance(particle, temp) < particle.r + temp.r){
validPos = false;
}
})
}
// if a valid position was found create it
if(validPos){
table.insertRow();
table.rows[table.rows.length -1].insertCell();
table.rows[table.rows.length -1].insertCell();
table.rows[table.rows.length -1].insertCell();
table.rows[table.rows.length -1].insertCell();
table.rows[table.rows.length -1].insertCell();
table.rows[table.rows.length -1].insertCell();
particles.push(new Particle(n, tx, ty, xv, yv, parseInt(form["mass"].value)));
}else{
errMsg += "Not enough room for that particle on the canvas! "
}
reloadDropdowns();
}
if(errMsg != "Errors: "){
alert(errMsg);
}
}
// Function that returns a radius, by multiplying the given mass by a constant
function getRadius(mass){
return mass*0.8;
}
// Function to remove a particle from the array by id
function remParticle(id){
alert("remove");
id = parseInt(id, 10);
particles = particles.filter(function(element, i){
eid = element.id;
if(id == eid){
table.deleteRow(i+1);
}
return id != eid;
});
console.log(particles);
}
// Function that adds the data at the current time to their respective array
function measureData(){
measurement++;
let ekt = 0;
particles.forEach((elem, i) => {
ekt += 0.5*Math.pow(elem.v, 2)*elem.m;
// Ek=0.5mv^2, add to total
elem.ek.push(0.5*Math.pow(elem.v, 2)*elem.m);
measurementData.push(measurement);
})
ek.push(ekt.toPrecision(6));
if(measurement > 100){
measurement = 0;
measurementData = [];
measurementData.push('Time (s)');
measurementData.push(0);
ek = [];
ek.push('Kientic Energy (J)');
ek.push(0);
particles.forEach((elem, i) => {
elem.ek = [];
elem.ek.push('Kientic Energy (J)');
})
}
drawKEChart();
}
// Function to draw the graph based on the selected values
function drawKEChart() {
//console.log(chartX);
let x = [];
if(chartX == "measurement"){
x = [...measurementData];
}else if(chartX == "ekt"){
x = [...ek];
}else{
x = [...particles[parseInt(chartX, 10)-1].ek];
}
let y = [];
if(chartY == "measurement"){
y = [...measurementData];
}else if(chartY == "ekt"){
y = [...ek];
}else{
y = [...particles[parseInt(chartY, 10)-1].ek];
}
var arr = [];
x.forEach((n, i) =>{
arr.push([n, y[i]]);
})
var data = google.visualization.arrayToDataTable(arr);
var options = {
title: 'Graph (Change X and Y Axis in the above form):',
legend: { position: 'bottom' }
};
var chart = new google.visualization.LineChart(document.getElementById('curve_chart'));
chart.draw(data, options);
}
// Function called when static friction is changed, to make sure a valid number is selected
function sfrChange(){
let element = document.getElementById("sfr");
if(element.value >= 1){
alert("The coefficient of static friction cannot be more than 1 for a billiard ball!");
element.value = sfr;
}else if(element.value <= fr){
alert("The coefficient of kinetic friction cannot be more than the coefficient of static friction!");
element.value = sfr;
}
else{
sfr = document.getElementById("sfr").value;
}
}
// Function called when kinetic friction is changed, to make sure a valid number is selected
function frChange(){
let element = document.getElementById("fr");
if(element.value >= 1){
alert("The coefficient of kinetic friction cannot be more than 1 for a billiard ball!");
element.value = fr;
}
//else if(element.value >= sfr){
// alert("The coefficient of kinetic friction cannot be more than the coefficient of static friction!");
// element.value = fr;
//}
else{
fr = element.value;
}
}
// Function called when % effectiveness is changed, to make sure a valid number is selected
function effeChange(){
let element = document.getElementById("effe");
if(element.value > 100){
alert("There cannot be more than 100% efficient collisions! ");
element.value = eff*100;
}
else if(element.value < 0){
alert("There cannot be less than 0% effecient collisions! ");
element.value = eff*100;
}else{
eff = element.value/100;
}
}
// Function called to reset the dropdown menus when particles are added
function reloadDropdowns(){
let xSelect = document.getElementById("graphx");
for(let i = 0; i < xSelect.options.length; i++){
xSelect.options.remove(i);
i--;
}
let ySelect = document.getElementById("graphy");
for(let j = 0; j < ySelect.options.length; j++){
ySelect.options.remove(j);
j--;
}
let xtOption = document.createElement("option");
xtOption.text = "Time"
xtOption.value = "measurement"
let xeOption = document.createElement("option");
xeOption.text = "Total Kinetic Energy"
xeOption.value = "ekt"
let ytOption = document.createElement("option");
ytOption.text = "Time"
ytOption.value = "measurement"
let yeOption = document.createElement("option");
yeOption.text = "Total Kinetic Energy"
yeOption.value = "ekt"
xSelect.options.add(xtOption, 0);
xSelect.options.add(xeOption, 1);
ySelect.options.add(ytOption, 1);
ySelect.options.add(yeOption, 0);
particles.forEach((elem, i) =>{
let temp = document.createElement("option");
let temp2 = document.createElement("option");
temp.text = "Particle " + (i+1).toString() + " Kinetic Energy"
temp.value = i+1;
temp2.text = "Particle " + (i+1).toString() + " Kinetic Energy"
temp2.value = i+1;
xSelect.options.add(temp, xSelect.options.length-1);
ySelect.options.add(temp2, ySelect.options.length-1);
})
}
function setVelocity(event){
let x = event.clientX-25;
let y = event.clientX-25;
while(mouseIsDown){
console.log(x);
}
}
function doMouseDown(event){
mouseIsDown = true;
setVelocity(event);
}
function doMouseUp(event){
alert();
mouseIsDown = false;
}

BIN
shot.mp3 Normal file

Binary file not shown.

BIN
wallhit.mp3 Normal file

Binary file not shown.